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Modern Adaptation of Prandtl’s Classic Lifting-Line Theory

W. F. Phillips¤ and D. O. Snyder†

Utah State University, Logan, Utah 84322-4130

The classical solution to Prandtl’s well-known lifting-line theory applies only to a single lifting surface with no
sweep and no dihedral. However, Prandtl’s original model of a � nite lifting surface has much broader applicability.
A general numerical lifting-linemethod based on Prandtl’s model is presented. Whereas classical lifting-line theory
is based on applying the two-dimensional Kutta–Joukowski law to a three-dimensional � ow, the present method
is based on a fully three-dimensional vortex lifting law. The method can be used for systems of lifting surfaces
with arbitrary camber, sweep, and dihedral. The accuracy realized from this method is shown to be comparable to
that obtained from numerical panel methods and inviscid computational � uid dynamics solutions, but at a small
fraction of the computational cost.

Nomenclature
Ar = global reference area
b = twice the lifting surface semispan
C ì = section lift coef� cient for wing section i
C à = airfoil section lift slope
C

à i = section lift slope for wing section i
C 1̀ = section lift coef� cient for an in� nite wing
Cmi = section moment coef� cient for wing section i
c = local section chord length
c̄ = overall aerodynamic mean chord length
c̄i = aerodynamic mean chord length for wing section i
dAi = differential planform area at control point i
dF = differential aerodynamic force vector
d` = directed differential vortex length vector
F = net force exerted by � uid on the surroundings
fdi = local section induced drag per unit span
f` = local section lift per unit span
G = dimensionless vortex strength vector
G i = dimensionless vortex strength for section i
[J] = N by N matrix of partial derivatives
L r = global reference length
M = net moment about the c.g. exerted by the � uid
N = total number of horseshoe vortices
n = number of horseshoevortices per semispan
R = residual vector
Ra = aspect ratio
ri = vector from c.g. to control point i
ri1 j = vector from node i1 to control j
ri2 j = vector from node i2 to control j
r1, r2 = magnitudes of r1 and r2

r0 = vector from beginning to end of vortex segment
r1 = vector from beginning of vortex segment to arbitrary

point in space
r2 = vector from end of vortex segment to arbitrary point in

space
s = spanwise coordinate
uai = chordwise unit vector at control point i
uni = normal unit vector at control point i
usi = spanwise unit vector at control point i
u 1 = unit vector in direction of the freestream
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V1 = magnitude of V 1
V = local � uid velocity
V 1 = velocity of the uniform � ow or freestream

= � uid volume
vi j = dimensionless velocity induced at control point j by

vortex i , having a unit strength
v 1 = unit vector in direction of freestream
a i = local angle of attack for wing section i
a L0i = local zero-lift angle of attack with no � ap de� ection
C = vortex strength in the direction of r0

C i = strength of horseshoe vortex i
D G = dimensionless strength correction vector
d Ai = planform area of wing section i
d i = � ap de� ection for wing section i
d `i = spatial vector along the bound segment i
d Mi = quarter-chordmoment for wing section i
e i = � ap effectiveness for wing section i
³ i = dimensionless spanwise length vector
h = angle from r1 to r2

q = � uid density
X = relaxation factor
! = local � uid vorticity

Introduction

T HE developmentofPrandtl’s lifting-linetheory,1,2 providedthe
� rstanalyticalmethodfor accuratelypredictinglift and induced

drag on a � nite lifting surface. In this theory, Prandtl hypothesized
that each spanwise section of a � nite wing has a section lift equiva-
lent to that acting on a similar section of an in� nite wing having the
same section circulation.With this hypothesis, the two-dimensional
vortex lifting law of Kutta3 and Joukowski4 was applied at each sec-
tion of the three-dimensionalwing, to relate the local aerodynamic
force to the local circulation. However, to � x the direction of the
aerodynamicforcevector, the undisturbedfreestreamvelocityin the
Kutta–Joukowski law was, intuitively and without proof, replaced
with the vector sum of the freestream velocity and the velocity in-
ducedby the trailingvortex sheet.This theorygivesgoodagreement
with experimentaldata for straightwings of aspect ratio greater than
about four. Prandtl’s lifting-line theory has had a profound impact
on the development of modern aerodynamics and hydrodynamics
and is still widely used today. However, conventional lifting-line
theory applies only to a single lifting surface with no sweep and no
dihedral.

In most modern textbooks(e.g., Bertin and Smith5 ), Prandtl’s hy-
pothesis is justi� ed based on the provision that � ow in the spanwise
direction is small. The failure of conventional lifting-line theory to
accurately predict the aerodynamic forces acting on a swept wing
is usually blamed on the violation of this provision. However, it
can be shown from the three-dimensionalvortex lifting law that the
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relationship between section lift and section circulation is not af-
fected by � ow parallel to the bound vorticity (see Saffman6). The
three-dimensional vortex lifting law requires that, for any volume
enclosed by a stream surface in an inviscid, incompressible,steady
� ow, a forcemust be exertedon the surroundingsequal to theproduct
of the � uid density and the cross product of the local � uid velocity
with the local � uid vorticity, integrated over the volume. Saffman6

presents a proof of this vortex lifting law.
Only in the limiting case of two-dimensional potential � ow can

the local � uid velocity vector in the vortex lifting law be replaced
with the freestream velocity. For this special case, the general vor-
tex lifting law reduces to the two-dimensional Kutta–Joukowski
law. Strictly speaking, the two-dimensional Kutta–Joukowski law
cannot be used to relate section lift to section circulation in a three-
dimensional potential � ow. However, the three-dimensionalvortex
lifting law, applied to Prandtl’s model of the � nite wing, requires a
local section lift equal to the cross product of the local � uid veloc-
ity vector with the local circulation vector, multiplied by the � uid
density, q (V £ C ). This cross product results in a section lift that is
independentof the componentof � uid velocity that is parallel to the
bound vorticity.

If the � uid � ow component parallel to the bound vorticity has
no effect on the section lift, why does conventional lifting-line the-
ory fail to predict the performance of swept wings? The answer is
also provided by the general vortex lifting law. When computing
section lift from the general vortex lifting law, the local velocity
induced on each vortex segment must include the velocity induced
by the remainder of that same vortex as well as that induced by
all other potentials included within the � ow� eld. This means that,
when computing the lift on any wing section, we must include the
velocity induced by all other vortex segments, free or bound, that
are contained within the � ow� eld. In the development of classical
lifting-line theory, Prandtl intuitively added the velocity induced
by the trailing vortex sheet to the undisturbed freestream velocity
speci� ed by the two-dimensional Kutta–Joukowski law. However,
he did not suggest including the velocity induced by one bound
vortex segment on another.

For � ow over a straight lifting surface, the boundvortex � laments
are all reasonablyparallel.For any two parallelvortex � laments, the
force resulting from the velocity induced on the � rst � lament by the
secondis equal, opposite,and collinearwith the force resultingfrom
the velocity induced on the second � lament by the � rst. Thus, for
straight lifting surfaces, the parallel nature of the bound vorticity
makes it reasonableto neglect the interactionbetween bound vortex
� laments and compute the section lift based only on the velocity
induced by the trailing vortex sheet and the undisturbed uniform
� ow.

For � ow over a swept wing, the bound vortex � laments on each
side of the wing are roughly parallel to each other and to the local
wing quarter chord. However, the bound vortex � laments on one
side of the wing are not parallel to the bound vortex � laments on
the other side. Thus, for a lifting swept wing, the bound vorticity
generated on one side of the wing produces downwash on the other
sideof thewing.This downwashreducesthenet lift and increasesthe
total induced drag for the wing. The downwash resulting from the
bound vorticity is greatest near the center of the wing, whereas
the downwashresultingfrom the trailingvorticityis greatestnear the
wing tips. Thus, for a swept wing, the lift is reduced both near the
center of the wing and near the tips.

Prandtl’s classical lifting-linetheory is based on a linear relation-
ship between section lift and sectionangleof attack.With this linear
assumption, and with the assumption of a straight lifting line, the
theory provides an analytical solution for the spanwise distribution
of lift and induceddrag actingon a � nite liftingsurface.The solution
is in the form of an in� nite sine series for the circulation distribu-
tion. Historically, the coef� cients in this sine series have usually
been evaluated from collocation methods. Typically, the series is
truncated to a � nite series, and the coef� cients in the � nite series
are evaluated by requiring the lifting-line equation to be satis� ed
at a number of spanwise locations equal to the number of terms
in the series. A very straightforward method was � rst presented by

Glauert.7 The most popular method, based on Gaussian quadrature,
was originally presented by Multhopp.8 Most recently, Rasmussen
and Smith9 have presented a more rigorous and more rapidly con-
verging method, based on a Fourier series expansion similar to that
� rst used by Lotz10 and Karamcheti.11

Purely numerical methods for solving the lifting-line equation
have also been proposed. McCormick12 has presented a numerical
method that can be used for a single lifting surface having a straight
lifting line. This method is based on applying the two-dimensional
Kutta–Joukowski law to the three-dimensional� ow and neglects the
downwash generated by the bound vorticity. Results obtained from
thismethodare essentiallyidenticalto thoseobtainedfrom the series
solution. A numerical lifting-line method has also been developed
by Andersonet al.13 that relaxes the assumptionof linearitybetween
section lift and section angle of attack. For a single straight lifting
surface, this method gives good agreement with experimental data
at angles of attack both below and above stall. However, the method
still assumes a straight lifting line and ignores the downwash pro-
duced by the bound vorticity. Thus, as is the case with all methods
used to obtain solutions to the classical lifting-line equation, this
numerical method applies only to a single lifting surface with no
sweep and no dihedral.

Here, a numerical lifting-line method is presented that can be
used to obtain the forces and moments acting on a system of lift-
ing surfaces with arbitrary position and orientation. This method,
based on Prandtl’s original model of a � nite wing, accurately pre-
dicts the effects of both sweep and dihedral as well as the effects of
aspect ratio, camber, and planformshape.Results obtainedfrom this
method are compared with experimental data and with results from
other numerical methods. The accuracy realized from the present
method is shown to be comparable to that obtained from numerical
panel methods and inviscid computational � uid dynamics (CFD)
solutions, but at a small fraction of the computational cost. In ad-
dition to the obvious applications to aeronautics, this method has
broad application to the � eld of hydrodynamics, including hydro-
foils, marine propellers, and control surfaces. Unlike the classical
lifting-line solution, the present method is not based on a linear re-
lationship between section lift and section angle of attack. Thus,
the method could conceivably be applied, with caution, to account
approximately for the effects of stall.

Formulation
In what is commonly referred to as the numerical lifting-line

method (e.g., Katz and Plotkin14 ), a � nite wing is synthesizedusing
a composite of horseshoe shaped vortices. The continuousdistribu-
tion of bound vorticity over the surface of the wing, as well as the
continuousdistribution of free vorticity in the trailing vortex sheet,
is approximated by a � nite number of discrete horseshoe vortices,
as shown in Fig. 1.

The bound portion of each horseshoevortex is placed coincident
with the wing quarter-chord line and is, thus, aligned with the local
sweep and dihedral. The trailing portion of each horseshoe vortex
is aligned with the trailing vortex sheet. The left-hand corner of one

Fig. 1 Horseshoe vortices distributed along the quarter chord of a
� nite wing with sweep and dihedral.
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Fig. 2 Positionvectors describing the geometry for a horseshoe vortex.

horseshoe and the right-hand corner of the next are placed on the
same nodal point. Thus, except at the wing tips, each trailingvortex
segment is coincident with another trailing segment from the adja-
cent vortex. If two adjacent vorticeshave exactly the same strength,
then the two coincidenttrailingsegmentsexactlycancelbecauseone
has clockwise rotation and the other has counterclockwiserotation.
The net vorticity that is shed from the wing at any internal node is
simply the difference in the vorticity of the two adjacent vortices
that share that node.

Each horseshoe vortex is composed of three straight vortex seg-
ments. From the Biot–Savart law and the nomenclature de� ned in
Fig. 2, the velocity vector induced at an arbitrary point in space, by
any straight vortex segment, is readily found to be, for example, see
Bertin and Smith5 or Katz and Plotkin,15

V =
C

4 p

r1 £ r2

j r1 £ r2 j 2
r0 ¢

r1

r2
¡

r2

r2

(1)

Although Eq. (1) is in the form commonly found in modern text-
books, it is not the most useful form for numerical calculations.The
induced velocity computed from Eq. (1) is indeterminatewhenever
r1 and r2 are collinear, even for points that lie outside the vortex
segment. To eliminate this division by zero for points that are not on
the vortex segment, we can make use of the trigonometric relations

r0 = r1 ¡ r2 , r1 ¢ r2 = r1r2 cos h , j r1 £ r2 j = r1r2 sin h

Using these relations we have
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and Eq. (1) can be more convenientlywritten as

V =
C

4 p

(r1 + r2)(r1 £ r2)
r1r2(r1r2 + r1 ¢ r2)

(2)

Notice that, unlike the result from Eq. (1), the induced velocity
computed from Eq. (2) is not singular when the angle from r1 to r2

is zero. It is, however, still singular when this angle is § p .
When we use Eq. (2) for the � nite bound segment and the two

semi-in� nite trailing segments shown in Fig. 2, the velocity vector

induced at an arbitrary point in space, by a complete horseshoe
vortex, is

V =
C

4 p

u 1 £ r2

r2(r2 ¡ u1 ¢ r2)
+

(r1 + r2)(r1 £ r2)
r1r2(r1r2 + r1 ¢ r2)

¡
u 1 £ r1

r1(r1 ¡ u 1 ¢ r1)
(3)

As is the case with panel methods, the user must specify the orien-
tation of the trailing vortex sheet. In obtaining the classical lifting-
line solution for a single lifting surface with no sweep or dihedral,
Prandtl assumed the trailingvortexsheet to be alignedwith the wing
chord. This was done to facilitate obtaining an analytic solution. In
obtaining a numerical solution, there is little advantage in aligning
the trailing vortex sheet with a vehicle axis such as the chord line.
More correctly, the trailing vortex sheet should be aligned with the
freestream. This is done easily in the numerical solution by setting
u 1 equal to the unit vector in the direction of the freestream. Al-
though it is intuitively more appealing to align the trailing vortex
sheetwith the freestream, in reality, this makes very little difference
in the � nal result. For typical wings, aligning the trailing vortex
sheet with the chord line rather than the freestream produces errors
in the resulting forces and moments of less than 1%. Still, because
the method allows the trailing vortex sheet to be aligned easily with
the freestream, this should always be done.

When a system of lifting surfaces is synthesized using N horse-
shoe vortices, in a manner similar to that shown in Fig. 1, Eq. (3) can
be used to determine the resultant velocity induced at any point in
space, if the strength of each horseshoe vortex is known. However,
these strengths are not known a priori. To compute the strengths of
the N vortices,we must have a system of N equationsrelating these
N strengthsto some known propertiesof the wing. In what has com-
monly been referred to as the numerical lifting-linemethod,14 these
N equations are provided by forcing a Neumann condition, which
speci� es zero normal velocity at the three-quarterchord of the wing
section midway between the trailing legs of each horseshoe vortex.
This method works remarkablywell for planar swept wings with no
camber. However, not surprisingly, this method does not work well
for cambered wings or for wings including de� ected � aps and/or
control surfaces.

In reality, this numerical lifting-line method is simply the vortex
lattice method16,17 appliedusing only a single lattice element, in the
chordwise direction, for each spanwise subdivision of the wing.
Applying the Neumannconditionat only one point in the chordwise
direction is clearly not adequate for wing sections with camber or
� ap de� ection. This method gives a result that depends only on the
positionand slope of the camber line at the three-quarterchord.The
predicted performance is completely independent of camber line
shape at any other chordwise location. This is clearly not realistic.

For a more pragmatic approach, we turn to the general three-
dimensional vortex lifting law,6

F = q (V £ !) d

Using Prandtl’s hypothesis, we assume that each spanwise wing
section has a section lift equivalentto that acting on a similar section
ofan in� nitewingwith thesamelocalangleof attack.Thus, applying
the vortex lifting law to a differential segment of the lifting line, we
have

dF = q C V £ d` (4)

If � ow overa � nite liftingsurface is synthesizedfrom a uniform� ow
combined with horseshoe vortices placed along the quarter-chord
line, from Eq. (3), the localvelocityinducedat a controlpoint placed
anywhere along the bound segment of horseshoe vortex j is

V j = V 1 +
N

i = 1

C i vi j

c̄i

(5)
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where vi j is the dimensionless induced velocity

vi j ´

c̄i

4p

u 1 £ ri2 j

ri2 j ri2 j ¡ u 1 ¢ ri2 j

+
ri1 j + ri2 j ri1 j £ ri2 j

ri1 j ri2 j ri1 j ri2 j + ri1 j ¢ ri2 j

¡
u1 £ ri1 j

ri1 j ri1 j ¡ u 1 ¢ ri1 j

, i 6= j

c̄i

4p

u 1 £ ri2 j

ri2 j ri2 j ¡ u 1 ¢ ri2 j

¡
u1 £ ri1 j

ri1 j ri1 j ¡ u 1 ¢ ri1 j

, i = j (6)

At this point, c̄i could be any characteristiclength associatedwith
the wing section alignedwith horseshoevortex i . This characteristic
length is simply used to nondimensionalizeEq. (6) and has no effect
on the induced velocity. The choice of characteristic length will be
addressed later.The bound vortex segment is excludedfrom Eq. (6),
when i = j , becausea straightvortexsegmentinducesno downwash
along its own length.

FromEqs. (4) and (5), theaerodynamicforce actingona spanwise
differential section of the lifting surface located at control point i is
given by

dFi = q C i V 1 +
N

j = 1

C j

c̄ j
v ji £ d`i (7)

When we allowfor thepossibilityof � ap de� ection, the local section
lift coef� cient for the airfoil section located at control point i is a
function of local angle of attack and local � ap de� ection,

C ì = C ì ( a i , d i ) (8)

The local angle of attack at control point i is

a i = tan ¡ 1 Vi ¢ uni

Vi ¢ uai

(9)

where uai and uni are, respectively,the unit vectors in the chordwise
direction and the direction normal to the chord, both in the plane of
the local airfoil section as shown in Fig. 3. If the relation implied
by Eq. (8) is known at each section of the wing, the magnitude of
the aerodynamic force acting on a spanwise differential section of
the wing located at control point i can be written as

j dFi j = 1
2
q V 2

1 C ì ( a i , d i ) dAi (10)

Setting the magnitudeof the force from Eq. (7) equal to thatobtained
from Eq. (10) and rearranging, we can write

2 v 1 +
N

j = 1

v ji G j £ ³ i G i ¡ C ì ( a i , d i ) = 0 (11)

Fig. 3 Unit vectors describing the orientation of the local airfoil sec-
tion.

where

v 1 ´
V 1

V1
, ³ i ´ c̄i

d`i

dAi
, G i ´

C i

c̄i V1

and, from Eqs. (5) and (9), the local angle of attack written in terms
of the dimensionless variables is given by

a i = tan ¡ 1
v 1 + N

j = 1 v ji G j ¢ uni

v 1 + N
j = 1 v ji G j ¢ uai

(12)

Equation (11) can be written for N different control points, one
associatedwith each of the N horseshoevorticesused to synthesize
the lifting surface or system of lifting surfaces. This provides a sys-
tem of N nonlinearequationsrelatingthe N unknowndimensionless
vortex strengths G i to known properties of the wing. At angles of
attack below stall, this system of nonlinear equations surrenders
quickly to Newton’s method.

To apply Newton’s method, the system of equations is written in
the vector form:

(G) = R (13)

where

i (G) = 2 v1 +
N

j = 1

v ji G j £ ³ i G i ¡ C ì ( a i , d i ) (14)

We wish to � nd the vector of dimensionlessvortex strengths G that
makes all components of the residual vector R go to zero. Thus, we
want the change in the residual vector to be ¡ R. We start with an
initial estimate for the G vector and iteratively re� ne the estimate
by applying the Newton corrector equation

[J]D G = ¡ R (15)

where [J] is the N by N matrix of partial derivatives

Ji j =
@ i

@G j
=

2wi ¢ (v j i £ ³ i )

j wi j
G i

¡
@C ì

@a i

vai (v ji ¢ uni ) ¡ vni (v ji ¢ uai )

v2
ai + v2

ni

, j 6= i

2 j wi j +
2wi ¢ (v ji £ ³ i )

j wi j
G i

¡
@C ì

@a i

vai (v ji ¢ uni ) ¡ vni (v j i ¢ uai )

v2
ai + v2

ni

, j = i

(16)

wi ´ v1 +
N

j = 1

v ji G j £ ³ i (17)

vni ´ v1 +
N

j = 1

v j i G j ¢ uni (18)

and

vai ´ v1 +
N

j = 1

v ji G j ¢ uai (19)

Using Eq. (16) in Eq. (15), we compute the correction vector D G.
This correction vector is used to obtain an improved estimate for
the dimensionless vortex strength vector G according to

G = G + X D G (20)



666 PHILLIPS AND SNYDER

This process is repeated until the magnitude of the largest residual
is less than some convergence criteria. For angles of attack below
stall, this method converges very rapidly using almost any initial
estimate for G and a relaxationfactor X of unity. At angles of attack
beyond stall, the method must be highly under relaxed and is very
sensitive to the initial estimate for G.

For the fastest possible convergence of Newton’s method, we
require an accurate initial estimate for the dimensionless vortex
strength vector. For this purpose, a linearizedversion of Eq. (11) is
useful. For a straight lifting surface of in� nite aspect ratio at small
angles of attack, the downwash is zero, the section lift is a linear
functionof angleof attack,and all nonlinearterms in Eq. (11)vanish.
For a lifting surface of high aspect ratio with no sweep or dihedral,
at small angles of attack, we can still ignore the nonlinear terms and
compute an approximatedimensionlessvortex strengthvector from
this linear system.

At small angles of attack, the local section lift coef� cient can be
approximated as

C ì ( a i , d i ) »= C
à i ( a i ¡ a L0i + e i d i ) (21)

Using the small angle approximation for both the geometric angle
of attack and the induced angle of attack, after applying Eq. (12) to
Eq. (21), we have

C ì
»= C

à i v 1 ¢ uni +
N

j = 1

v j i ¢ uni G j ¡ a L0i + e i d i (22)

Applying Eq. (22) to Eq. (11) and ignoring second-order terms, we
obtain the linear system

2 j v1 £ ³ i j G i ¡ C à i

N

j = 1

v ji ¢ uni G j =C à i (v1 ¢ uni ¡ a L0i + e i d i )

(23)

Equation (23) gives good results, at small angles of attack, for a
single lifting surface of high aspect ratio with no sweep or dihedral.
For larger angles of attack, highly swept wings, or for interacting
systems of lifting surfaces, the nonlinear system given by Eq. (11)
should be used. However, Eq. (23) provides a reasonable initial
estimate for the dimensionless vortex strength vector, to be used
with Newton’s method for obtaining a solution to this nonlinear
system.

Aerodynamic Forces and Moments
Once the vortex strengths have been determined, the total aero-

dynamic force vector can be determined from Eq. (7). If the lifting
surfaceor surfacesare synthesizedfroma largenumberof horseshoe
vortices, each covering a small spanwise increment of one lifting
surface, we can approximate the aerodynamic force as being con-
stant over each spanwise increment. Then, from Eq. (7), the total
aerodynamic force is given by

F = q

N

i = 1

C i V1 +
N

j = 1

C i C j

c̄ j
v ji £ d `i (24)

where d `i is the spatialvectoralong the boundsegmentof horseshoe
vortex i from node 1 to node 2, in the directionof segment vorticity.
When we nondimensionalize Eq. (24), the total nondimensional
aerodynamic force is

F
1
2
q V 2

1 Ar

= 2
N

i = 1

G i v 1 +
N

j = 1

G i G j v ji £ ³ i

d Ai

Ar

(25)

where d Ai is the planform area of segment i ,

d Ai =
s2

s = s1

c ds (26)

The aerodynamic moment generated about the center of gravity
is

M = q

N

i = 1

ri £ C i V 1 +
N

j = 1

C i C j

c̄ j
v j i £ d `i + d Mi (27)

If we assume a constant section moment coef� cient Cmi over each
spanwise increment, then

d Mi = ¡
1
2

q V 2
1 Cmi

s2

s = s1

c2 ds usi (28)

where usi is the local spanwise unit vector shown in Fig. 3,

usi = uai £ uni (29)

When we use Eq. (28) in Eq. (27) and nondimensionalize

M
1
2
q V 2

1 Ar Lr

=
N

i = 1

2ri £ G i v1 +
N

j = 1

G i G j v ji £ ³ i

¡
Cmi

d Ai

s2

s = s1

c2 ds usi
d Ai

Ar Lr

(30)

To this point, the local characteristic length c̄i has not been de-
� ned. It could be any characteristiclength associatedwith the span-
wise incrementof the liftingsurfacethatis associatedwith horseshoe
vortex i . From Eq. (30), we see that the natural choice for this lo-
cal characteristic length is the integral of the chord length squared,
with respect to the spanwise coordinate,divided by the incremental
area. If we also assume a linear variation in chord length over each
spanwise increment, we have

d Ai =
s2

s = s1

c ds =
ci1 + ci2

2
si2 ¡ si1 (31)

and

c̄i ´
1

d Ai

s2

s = s1

c2 ds =
2

3

c2
i1

+ ci1 ci2 + c2
i2

ci1 + ci2

(32)

When we use these de� nitions in Eq. (30), the dimensionless aero-
dynamic moment about the c.g. is

M
1
2
q V 2

1 Ar Lr

=
N

i = 1

2ri £ G i v1 +
N

j = 1

G i G j v ji £ ³ i

¡ Cmi c̄i usi
d Ai

Ar L r

(33)

Once the N dimensionlessvortex strengths G i are known,Eqs. (25)
and (33) are used to evaluate the aerodynamic forces and moments.

Like panel methods, lifting-line theory provides only a potential
� ow solution. Thus, the forces and moments computed from this
method do not include viscous effects, so that the parasitic drag is
unobtainable.In additionto this restriction,that also applies to panel
methods, lifting-line theory imposes an additional restriction that
does not apply to panelmethods.For liftingsurfaceswith low aspect
ratio, Prandtl’s hypothesis breaks down, and the usual relationship
between local section lift and local section angle of attack no longer
applies. It has long been established that lifting-line theory gives
good agreementwith experimentaldata for liftingsurfacesof aspect
ratio greater than about four.2 For lifting surfaces of lower aspect
ratio, panel methods or CFD solutions should be used.
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Fig. 4 Lifting-line grid with cosine clustering and 20 elements per
semispan.

Grid Generation and Control Points
Each lifting surface must, of course, be divided into spanwise

elements, in a manner similar to that shown symbolically in Fig. 1.
In Fig. 1, the wing is divided into elements of equal spanwise in-
crement. However, this is not the most ef� cient way in which to
grid a lifting surface. Because vorticity is shed from a lifting sur-
face more rapidly in the region near the tips, the nodal points should
be clustered more tightly in this region for best computational ef� -
ciency. The authors have found conventionalcosine clustering to be
quite ef� cient. For straight liftingsurfaces,clusteringis only needed
near the tips and the cosine distribution can be applied across the
entire span. However, for a lifting surface with sweep and/or dihe-
dral, there is a step change in the slope of the quarter chord at the
root. This step change causes the downwash to change very rapidly
in the region near the root. Thus, in general, the authors recom-
mend applying cosine clustering independentlyover each semispan
of each lifting surface, as shown in Fig. 4. This clusters the nodes
more tightly at both the tip and the root. This clustering is based on
the change of variables,

s / b = [1 ¡ cos( u )]/ 4 (34)

Over each semispan, u varies from zero to p as s varies from zero to
b /2. Distributing the nodes uniformly in u will provide the desired
clustering in s. If the total number of horseshoeelements desiredon
each semispan is n, the spanwise nodal coordinates are computed
from,

si /b = 1
4
[1 ¡ cos(i p / n)], 0 · i · n (35)

where the bound segment of horseshoe vortex i extends from node
i to node i ¡ 1 on a left semispan and from node i ¡ 1 to node i
on a right semispan. The authors have found that using this nodal
distribution with about 40 horseshoe elements per semispan gives
the best compromise between speed and accuracy. Figure 4 shows
a system of lifting surfaces overlaid with a grid of this type using
20 elements per semispan.

Because singularities occur at the junctures of adjacent bound-
vortex segments, for maximum accuracy and computational ef� -
ciency, the location of control points must be critically assessed. At
� rst thought, it would seem most reasonable to place control points
on the boundsegmentof each vortex,midway between the two trail-
ing legs. However, the authors have found that this does not give the
best numerical accuracy.A signi� cant improvementin accuracy,for
a given number of elements, can be achieved by placing the control
points midway in u rather than midway in s. Thus, the spanwise
control point coordinates are computed from

si / b = 1
4 {1 ¡ cos[(i p / n) ¡ ( p /2n)]}, 1 · i · n (36)

This distributionplacescontrolpointsvery near the spatialmidpoint
of each boundvortexsegment,overmost of the wing. However,near
the root and the tip, these control points are signi� cantly offset from
the spatial midpoint.

Results
For straight elliptic wings with no geometric twist and no aero-

dynamic twist, Prandtl’s classical lifting-line theory gives a very
simple and well-known closed-form solution. From this solution,
the section lift distribution in the spanwise direction is given by

f`
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2
q V 2

1 c̄C 1̀
=

4Ra

p Ra + C à

[1 ¡ (2s / b)2]
1
2 (37)

Fig. 5 Section lift distribution for three elliptic wings.

Fig. 6 Section induced drag distribution for three elliptic wings.

This same solution gives the local section induced drag
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As a � rst-order test, the numerical method presented here should
agree with Eqs. (37) and (38), at small angles of attack, for a straight
elliptic wing with no geometric or aerodynamic twist. Figure 5
shows a comparison between the section lift distribution predicted
by Eq. (37) and that predicted by the present numerical method
for three straight elliptic wings of different aspect ratio. Figure 6
compares the induced drag distribution predicted by Eq. (38) to
that predicted from the present method for the same three elliptic
wings. A similar comparison for tapered wings shows very similar
results. The numerical results shown in Figs. 5 and 6 were all gen-
erated using 40 horseshoe elements per semispan for wings having
a NACA 2412 airfoil section. Similar comparisons were made for
other straight wings having varying amounts of camber, taper, and
washout. Camber was varied from 0 to 8%, taper ratio was varied
from 0.1 to 1.0, and washout was varied from 0 to 5 deg. In all cases,
the numerical solution using 40 horseshoe elements per semispan
agreed with the classical lifting-line solution to within two-tenths
of 1% for the induced drag and to within � ve-hundredthsof 1% for
the lift. Thus, for all practical purposes, results obtained from this
numerical lifting-line method are identical to those obtained from
the classical lifting-line solution for a single lifting surface with
no sweep or dihedral. Because, for straight wings of aspect ratios
greater than about four, the classicalsolutionis known to adequately
predict the effects of aspect ratio, camber, and planform shape, the
same can be said for the present numerical solution.

Unlike the analytical solution to Prandtl’s classical lifting-line
theory, the present numerical method can be applied to wings with
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sweep and/or dihedral. To examine how well the present method
predicts the effects of sweep and dihedral, resultsobtained from this
methodwere comparedwith resultsobtainedfroma numericalpanel
methodand froman inviscidCFD solution.The resultspredictedfor
the effects of sweep were also compared with limited experimental
data.

For thenumericalpanelmethodcomparison,thecommercialcode
PMARC18,19 was selected.This codewas developedat NASA Ames
Research Center and is one of the most ef� cient numerical panel
codes available. PMARC uses � at quadrilateral panels with uni-
form source and doublet distributionson each panel. This code also
accounts for the effects of wake rollup, using an unsteady wake
development approach.

The commercial code WIND,20 developed by the NPARC Al-
liance, was chosen for the inviscidCFD comparison.This code uses
a node-centered � nite volume approach to solve the Euler equa-
tions on a structured grid. The available � fth-order upwind-biased
discretization scheme was used to reduce the effects of numerical
viscosity.

For all three numerical methods the grid size was repeatedly re-
� neduntil the solutionwas no longersigni� cantlyaffectedby further
grid re� nement. By this procedure,an optimum grid for each of the
three methods was selected as that which gave the best combina-
tion of accuracy and computationalspeed. With this method of grid
resolution, the numerical lifting-linemethod required 40 section el-
ements per semispan.Grid-resolvedsolutions for PMARC required
4500 panels per semispan. The selected grid was partitioned to give
45 segments along the semispan and 90 around the circumference,
with panelsclusterednear the leadingedge, the trailingedge, and the
wingtips. For WIND, a two-block H–H type mesh with 1.25 £ 106

grid points per semispan gave the best compromise between accu-
racy and computational ef� ciency. The computational domain for
the WIND solutions extended approximately 30 chords from the
wing in all directions, with grid points clustered near the wing and
the trailing-tip vortices. When these resolved grids were used for
the three methods, the computationaltime required to obtain a solu-
tion from PMARC was about 2 £ 104 times that required using the
presentnumericallifting-linemethod.The WIND solutionsrequired
approximately 2 £ 106 times as long as the lifting-line solutions.

A comparison between results obtained from these three numer-
ical methods and previously published experimental data is shown
in Figs. 7 and 8. The solid lines and � lled symbols correspond to
a straight wing of aspect ratio 6.57, with experimental data ob-
tained from McAlister and Takahashi.21 The dashed lines and open
symbols are for a 45-deg swept wing of aspect ratio 5.0, having ex-
perimental data reported by Weber and Brebner.22 Both wings have
symmetrical airfoil sections with no geometric twist and constant
chord throughoutthe span.The straightwing has a thicknessof 15%
and the swept wing has a thickness of 12%.

Fig. 7 Comparisonbetween the lift coef� cient predicted by the numer-
ical lifting-line method, PMARC, and WIND with that obtained from
experimental data, for a straight wing and a wing with 45 deg of sweep.

Fig. 8 Comparison between the induced drag coef� cient predicted by
the numerical lifting-line method, PMARC, and WIND with that ob-
tained from experimental data, for a straight wing and a wing with
45 deg of sweep.

From the results shown in Fig. 7, we see that the lift coef� cient
predicted by all three methods is in good agreement with experi-
mental observations for both wings. From Fig. 8 we see that, for
the straight wing, the induced drag predicted by both the numeri-
cal lifting-line method and by PMARC is in good agreement with
experimental data, whereas WIND gives an induced drag that is
somewhat higher. The predictions for induced drag on the swept
wing are not nearly as good. For this wing, the induced drag pre-
dicted by the panel code is about 40% less than that observedexper-
imentally. However, both the numerical lifting-line method and the
CFD solution give induced drag values that are about 25% above
the experimental values. Still, the values of induced drag predicted
by the numerical lifting-line method are as good as or better than
those predictedby the other two methods,even for this highlyswept
wing. Furthermore, the induceddrag on a highly swept wing, as pre-
dicted by the presentmethod, appears to be somewhat conservative,
whereas the panel code predicts an induced drag that is too low.
Though none of the numerical methods tested seemed to do very
well at predicting the effects of sweep on induced drag, all three of
the methods appeared to do a good job of predicting the effects of
sweep on lift.

To obtain the numerical lifting-linesolutionsshown in Figs. 7 and
8, we have used the linear relationship between a two-dimensional
section lift coef� cient and a section angle of attack that is predicted
by thin airfoil theory. Because the downwash and induced angle of
attack are obtained from the solution to the nonlinear system given
by Eq. (11), we have no reason to expect that the lift coef� cient
predicted for the complete wing should be a linear function of geo-
metric angle of attack. However, the results in Fig. 7 show that this
relationship is, in fact, very nearly linear for both wings. The result
predicted for the straight wing is almost exactly linear, as is also
predicted by the classical lifting-line solution. Even for the highly
swept wing, the deviation from linearity is quite small. Both the
panel code and the experimental data con� rm this result.

The overpredictionof induceddrag by the CFD code for both the
straightwing and the swept wing is likelydue to numericalviscosity
and is expected. However, the reason that the numerical lifting-line
methodoverpredictsinduceddrag for the swept wing, butnot for the
straight wing, may be less obvious. The foundation of lifting-line
theory requires the bound vorticity to follow the chordwise aerody-
namic center of the wing. The numerical lifting-linesolution shown
in Fig. 8 was obtained by assuming that the lifting-line follows the
wing quarter chord, which is the theoretical aerodynamic center
from thin airfoil theory. With this assumption, the discontinuity in
the slope of the quarter chord at the spanwise midpoint of a highly
swept wing produces a rather strong singularity (see, for example,
Cheng and Meng23 ). This results in the prediction of strong down-
wash and large induced drag in the region near this singularity. In
reality, the experimental results of Weber and Brebner22 show that,
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Fig. 9 Deviation of the aerodynamic center from the quarter chord in
the region near the spanwise midpoint of a highly swept wing.

Fig. 10 Comparison between the rolling moment coef� cient predicted
by the numerical lifting-line method, PMARC, and WIND for wings
with 10 and 20 deg of dihedral.

near the spanwisemidpointof a highlyswept wing, the aerodynamic
center moves considerably aft of the wing quarter chord, as shown
in Fig. 9. This removes the discontinuity in slope at the spanwise
midpoint of the lifting line and signi� cantly reduces the predicted
induced drag. Unfortunately, there is currently no simple means to
predict the true chordwise aerodynamic center of a highly swept
wing in the region near the spanwise midpoint. Thus, the present
method cannot easily be corrected to remove this error.

The accuracy of the present numerical lifting-line method for
predictingdihedraleffectswas also testedbycomparingthismethod
with both PMARC and WIND. Figure 10 shows the variation in
rolling moment coef� cient with sideslip angle for two nonplanar
rectangularwings havingdifferentdihedral,as predictedby all three
methods. Both wings have symmetric NACA 0015 airfoil sections
with no sweep or twist and an aspect ratio of 6.57.The solid line and
� lled symbols correspond to a wing with 20 deg dihedral, whereas
thedashedlineandopensymbolsare for a wingwith 10degdihedral.

From Fig. 10, we see that all three methods agree very closely in
their predictions for the wing with 10 deg dihedral. For this wing
the agreementbetween the lifting-linemethod and the panel code is
within 2%, and the CFD solutionagreeswith the lifting-linesolution
to within 7%. The three methods do, however, diverge somewhat in
their predictionsfor the wing with 20-deg dihedral.This divergence
becomes more pronounced at very large sideslip angles. For the
wing with 20-deg dihedral at sideslip angles in the range of 12 deg,
the panel codepredictsa rollingmoment coef� cient that is about9%
above that predicted by the lifting-line method, whereas the CFD
solution predicts a result that is nearly 10% below the lifting-line
solution.

The present numerical method could be used to predict the aero-
dynamic forces and moments acting on a system of lifting surfaces
with arbitrary position and orientation. Each lifting surface would
be synthesized by distributing horseshoe vortices on a grid struc-
tured similarly to that shown in Fig. 4. Because all of the horseshoe
vortices used to synthesize the complete system of lifting surfaces

Fig. 11 Pressure forces and shed vorticity for a system of lifting sur-
faces as predicted by the numerical lifting-line method.

are combined and forced to satisfy Eq. (11) as a single system of
coupled equations, the interactions between lifting surfaces are di-
rectly accountedfor. An example of such interactionscan be seen in
Fig. 11. The lifting surfacesshown in Fig. 11 all have symmetric air-
foil sectionsand areorientedto give a zerogeometricangleof attack.
The only direct production of lift in this con� guration comes from
a de� ection of the ailerons. The de� ected ailerons produce lift and
vorticity that in turn induce lift and vorticityon all other surfaces.In
Fig. 11 the arrows indicate the magnitude and direction of the local
section force, and the streamwise lines at the trailing edge of each
lifting surface indicate the magnitudeof the local shed vorticity. As
can be seen from Fig. 11, the lifting surface interactions predicted
by the present method are at least qualitatively correct. However,
further study is needed to determine the quantitativeaccuracyof the
predicted lifting surface interactions.

The present numerical method contains no inherent requirement
for a linear relationshipbetween section lift and section angle of at-
tack. Thus, the method could conceivably be applied, with caution,
to account approximately for the effects of stall. The lifting-line
method requires a known relationship for the section lift coef� cient
as a function of section angle of attack. Because such relationships
must be obtained experimentally beyond stall, the present method
would predict stall by using a semi-empiricalcorrectionto an other-
wise potential � ow solution. For this reason, the method should be
used with extreme caution for angles of attack beyond stall. How-
ever, the method may be able to predict the onset of stall. Further
study is needed to determine to what extent the method can be used
at angles of attack near or beyond stall.

Conclusions
The insight of Ludwig Prandtl (1875–1953) was nothing short of

astonishing.This was nevermore dramaticallydemonstratedthan in
the developmentof his classicallifting-linetheory,during the period
from 1911–1918. The utility of this simple and elegant theory is so
great that it is still widely used today.Furthermore,with a few minor
alterations and the use of a modern computer, the model proposed
by Prandtl can be used to predict the inviscid forces and moments
acting on lifting surfacesof aspect ratio greater than about four with
an accuracy as good as that obtained from modern panel codes or
CFD, but at a small fraction of the computationalcost.
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