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Modern Adaptation of Prandtl’s Classic Lifting-Line Theory

W. E. Phillips*and D. O. Snyder"
Utah State University, Logan, Utah 84322-4130

The classical solution to Prandtl’s well-known lifting-line theory applies only to a single lifting surface with no
sweep and no dihedral. However, Prandtl’s original model of a finite lifting surface has much broader applicability.
A general numerical lifting-line method based on Prandtl’s model is presented. Whereas classical lifting-line theory
is based on applying the two-dimensional Kutta-Joukowski law to a three-dimensional flow, the present method
is based on a fully three-dimensional vortex lifting law. The method can be used for systems of lifting surfaces
with arbitrary camber, sweep, and dihedral. The accuracy realized from this method is shown to be comparable to
that obtained from numerical panel methods and inviscid computational fluid dynamics solutions, but at a small

fraction of the computational cost.

Nomenclature
A, = global reference area
b = twice the lifting surface semispan
Cy = section lift coefficient for wing section i
Cp, = airfoil section lift slope

Cp,i = section lift slope for wing section i

Cew = section lift coefficient for an infinite wing

C,; = section moment coefficient for wing section i

c = local section chord length

c = overall aerodynamic mean chord length

¢ = aerodynamic mean chord length for wing section i

dA; = differential planform area at control point i

dF = differential aerodynamic force vector

de = directed differential vortex length vector

F = net force exerted by fluid on the surroundings

fa, = local section induced drag per unit span

fe = local section lift per unit span

G = dimensionless vortex strength vector

G; = dimensionless vortex strength for section i

[J1 = N by N matrix of partial derivatives

L, = global reference length

M = net moment about the c.g. exerted by the fluid

N = total number of horseshoe vortices

n = number of horseshoe vortices per semispan

R = residual vector

R, = aspect ratio

T = vector from c.g. to control point i

r;; = vector fromnode i1 to control j

riy; = vector from node i2 to control j

ry, ¥, = magnitudesof r; andr,

ro = vector from beginning to end of vortex segment

r = vector from beginning of vortex segment to arbitrary
point in space

r = vector from end of vortex segment to arbitrary point in
space

s = spanwise coordinate

U, = chordwise unit vector at control point i

Ui = normal unit vector at control point i

Uy = spanwise unit vector at control point i

Uo = unit vector in direction of the freestream
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Ve = magnitude of V,,

1% = local fluid velocity

Ve = velocity of the uniform flow or freestream

Vv = fluid volume

vij = dimensionless velocity induced at control point j by
vortex i, having a unit strength

Voo = unit vector in direction of freestream

o = local angle of attack for wing section i

aro; = local zero-lift angle of attack with no flap deflection

r = vortex strength in the direction of r

T = strength of horseshoe vortex i

AG = dimensionless strength correction vector

6A; = planform area of wing section i

6 = flap deflection for wing section i

of; = spatial vector along the bound segment i

6M; = quarter-chord moment for wing section i

& = flap effectiveness for wing section i

¢ = dimensionless spanwise length vector

0 = angle fromr, to r,

P = fluid density

Q = relaxation factor

w = local fluid vorticity

Introduction

HE developmentof Prandtl’s lifting-linetheory,? provided the

firstanalyticalmethod for accuratelypredictingliftandinduced
drag on a finite lifting surface. In this theory, Prandtl hypothesized
that each spanwise section of a finite wing has a section lift equiva-
lent to that acting on a similar section of an infinite wing having the
same section circulation. With this hypothesis, the two-dimensional
vortex lifting law of Kutta® and Joukowski* was applied at each sec-
tion of the three-dimensionalwing, to relate the local aerodynamic
force to the local circulation. However, to fix the direction of the
aerodynamicforce vector, the undisturbedfreestream velocityin the
Kutta-Joukowski law was, intuitively and without proof, replaced
with the vector sum of the freestream velocity and the velocity in-
ducedby the trailing vortex sheet. This theory gives good agreement
with experimental data for straight wings of aspectratio greater than
about four. Prandtl’s lifting-line theory has had a profound impact
on the development of modern aerodynamics and hydrodynamics
and is still widely used today. However, conventional lifting-line
theory applies only to a single lifting surface with no sweep and no
dihedral.

In most modern textbooks (e.g., Bertin and Smith3), Prandtl’s hy-
pothesisis justified based on the provision that flow in the spanwise
direction is small. The failure of conventional lifting-line theory to
accurately predict the aerodynamic forces acting on a swept wing
is usually blamed on the violation of this provision. However, it
can be shown from the three-dimensionalvortex lifting law that the
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relationship between section lift and section circulation is not af-
fected by flow parallel to the bound vorticity (see Saffman®). The
three-dimensional vortex lifting law requires that, for any volume
enclosed by a stream surface in an inviscid, incompressible, steady
flow, aforce must be exerted on the surroundingsequal to the product
of the fluid density and the cross product of the local fluid velocity
with the local fluid vorticity, integrated over the volume. Saffman®
presents a proof of this vortex lifting law.

Only in the limiting case of two-dimensional potential flow can
the local fluid velocity vector in the vortex lifting law be replaced
with the freestream velocity. For this special case, the general vor-
tex lifting law reduces to the two-dimensional Kutta-Joukowski
law. Strictly speaking, the two-dimensional Kutta-Joukowski law
cannot be used to relate section lift to section circulationin a three-
dimensional potential flow. However, the three-dimensional vortex
lifting law, applied to Prandtl’s model of the finite wing, requires a
local section lift equal to the cross product of the local fluid veloc-
ity vector with the local circulation vector, multiplied by the fluid
density, p(V X I). This cross productresultsin a section lift that is
independentof the componentof fluid velocity that is parallel to the
bound vorticity.

If the fluid flow component parallel to the bound vorticity has
no effect on the section lift, why does conventional lifting-line the-
ory fail to predict the performance of swept wings? The answer is
also provided by the general vortex lifting law. When computing
section lift from the general vortex lifting law, the local velocity
induced on each vortex segment must include the velocity induced
by the remainder of that same vortex as well as that induced by
all other potentials included within the flowfield. This means that,
when computing the lift on any wing section, we must include the
velocity induced by all other vortex segments, free or bound, that
are contained within the flowfield. In the development of classical
lifting-line theory, Prandtl intuitively added the velocity induced
by the trailing vortex sheet to the undisturbed freestream velocity
specified by the two-dimensional Kutta-Joukowski law. However,
he did not suggest including the velocity induced by one bound
vortex segment on another.

For flow over a straightlifting surface, the bound vortex filaments
are all reasonably parallel. For any two parallel vortex filaments, the
force resulting from the velocity induced on the first filament by the
secondis equal, opposite,and collinear with the force resulting from
the velocity induced on the second filament by the first. Thus, for
straight lifting surfaces, the parallel nature of the bound vorticity
makes it reasonableto neglectthe interactionbetween bound vortex
filaments and compute the section lift based only on the velocity
induced by the trailing vortex sheet and the undisturbed uniform
flow.

For flow over a swept wing, the bound vortex filaments on each
side of the wing are roughly parallel to each other and to the local
wing quarter chord. However, the bound vortex filaments on one
side of the wing are not parallel to the bound vortex filaments on
the other side. Thus, for a lifting swept wing, the bound vorticity
generated on one side of the wing produces downwash on the other
side of the wing. This downwashreducesthe netliftand increasesthe
total induced drag for the wing. The downwash resulting from the
bound vorticity is greatest near the center of the wing, whereas
the downwashresulting from the trailing vorticityis greatestnearthe
wing tips. Thus, for a swept wing, the lift is reduced both near the
center of the wing and near the tips.

Prandtl’s classical lifting-line theory is based on a linear relation-
ship between section lift and sectionangle of attack. With this linear
assumption, and with the assumption of a straight lifting line, the
theory provides an analytical solution for the spanwise distribution
of lifttandinduceddrag acting on a finite lifting surface. The solution
is in the form of an infinite sine series for the circulation distribu-
tion. Historically, the coefficients in this sine series have usually
been evaluated from collocation methods. Typically, the series is
truncated to a finite series, and the coefficients in the finite series
are evaluated by requiring the lifting-line equation to be satisfied
at a number of spanwise locations equal to the number of terms
in the series. A very straightforward method was first presented by

Glauert.” The most popular method, based on Gaussian quadrature,
was originally presented by Multhopp.! Most recently, Rasmussen
and Smith® have presented a more rigorous and more rapidly con-
verging method, based on a Fourier series expansion similar to that
first used by Lotz'* and Karamcheti.!!

Purely numerical methods for solving the lifting-line equation
have also been proposed. McCormick'? has presented a numerical
method that can be used for a single lifting surface having a straight
lifting line. This method is based on applying the two-dimensional
Kutta-Joukowskilaw to the three-dimensionalflow and neglects the
downwash generated by the bound vorticity. Results obtained from
this method are essentiallyidenticalto those obtained from the series
solution. A numerical lifting-line method has also been developed
by Andersonet al.'* that relaxes the assumptionof linearity between
section lift and section angle of attack. For a single straight lifting
surface, this method gives good agreement with experimental data
at angles of attack both below and above stall. However, the method
still assumes a straight lifting line and ignores the downwash pro-
duced by the bound vorticity. Thus, as is the case with all methods
used to obtain solutions to the classical lifting-line equation, this
numerical method applies only to a single lifting surface with no
sweep and no dihedral.

Here, a numerical lifting-line method is presented that can be
used to obtain the forces and moments acting on a system of lift-
ing surfaces with arbitrary position and orientation. This method,
based on Prandtl’s original model of a finite wing, accurately pre-
dicts the effects of both sweep and dihedral as well as the effects of
aspectratio, camber, and planform shape. Results obtained from this
method are compared with experimental data and with results from
other numerical methods. The accuracy realized from the present
method is shown to be comparable to that obtained from numerical
panel methods and inviscid computational fluid dynamics (CFD)
solutions, but at a small fraction of the computational cost. In ad-
dition to the obvious applications to aeronautics, this method has
broad application to the field of hydrodynamics, including hydro-
foils, marine propellers, and control surfaces. Unlike the classical
lifting-line solution, the present method is not based on a linear re-
lationship between section lift and section angle of attack. Thus,
the method could conceivably be applied, with caution, to account
approximately for the effects of stall.

Formulation

In what is commonly referred to as the numerical lifting-line
method (e.g., Katz and Plotkin'#), a finite wing is synthesizedusing
a composite of horseshoe shaped vortices. The continuous distribu-
tion of bound vorticity over the surface of the wing, as well as the
continuous distribution of free vorticity in the trailing vortex sheet,
is approximated by a finite number of discrete horseshoe vortices,
as shown in Fig. 1.

The bound portion of each horseshoe vortex is placed coincident
with the wing quarter-chordline and is, thus, aligned with the local
sweep and dihedral. The trailing portion of each horseshoe vortex
is aligned with the trailing vortex sheet. The left-hand corner of one

Fig. 1 Horseshoe vortices distributed along the quarter chord of a
finite wing with sweep and dihedral.
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Fig. 2 Position vectors describing the geometry for a horseshoe vortex.

horseshoe and the right-hand corner of the next are placed on the
same nodal point. Thus, except at the wing tips, each trailing vortex
segment is coincident with another trailing segment from the adja-
cent vortex. If two adjacent vortices have exactly the same strength,
then the two coincidenttrailing segments exactly cancel because one
has clockwise rotation and the other has counterclockwiserotation.
The net vorticity that is shed from the wing at any internal node is
simply the difference in the vorticity of the two adjacent vortices
that share that node.

Each horseshoe vortex is composed of three straight vortex seg-
ments. From the Biot-Savart law and the nomenclature defined in
Fig. 2, the velocity vector induced at an arbitrary point in space, by
any straight vortex segment, is readily found to be, for example, see
Bertin and Smith’ or Katz and Plotkin,"

r r Xr r r
V=—lZz (22 1)
47 |ry Xrpl? ra I

Although Eq. (1) is in the form commonly found in modern text-
books, it is not the most useful form for numerical calculations.The
induced velocity computed from Eq. (1) is indeterminate whenever
r; and r;, are collinear, even for points that lie outside the vortex
segment. To eliminate this division by zero for points that are not on
the vortex segment, we can make use of the trigonometric relations

ro =1 — Iy, F -ry =rrycos0, |r, Xry| =rr,sin0

Using these relations we have

To r ny\ rn-—n r.n
I xrl? \r n/) InxnP \rn n

1 rirn ri-n
=S5 \ntn-———m———
riry sin” 0 ry ry

_(r+rp)(1 —cosb) ry+r,

rirZ(1 — cos? 0) - r2r2(1 + cos6)

ry+rnr

rira(riry *ry-r;)

and Eq. (1) can be more conveniently written as

_ T (i 4 Xr)
A riry(riry +ry 1)

2

Notice that, unlike the result from Eq. (1), the induced velocity
computed from Eq. (2) is not singular when the angle from r; to r,
is zero. It is, however, still singular when this angle is 7.

When we use Eq. (2) for the finite bound segment and the two
semi-infinite trailing segments shown in Fig. 2, the velocity vector

induced at an arbitrary point in space, by a complete horseshoe

vortex, is
U X1y
ri(ry —Ue *ry)

V= T |_ Uy XTIy
3

(r ) Xr)
riry(riry try-r)

_4_7r|_r2(r2 — U " T2)

As is the case with panel methods, the user must specity the orien-
tation of the trailing vortex sheet. In obtaining the classical lifting-
line solution for a single lifting surface with no sweep or dihedral,
Prandtl assumed the trailing vortex sheet to be aligned with the wing
chord. This was done to facilitate obtaining an analytic solution. In
obtaining a numerical solution, there is little advantage in aligning
the trailing vortex sheet with a vehicle axis such as the chord line.
More correctly, the trailing vortex sheet should be aligned with the
freestream. This is done easily in the numerical solution by setting
U equal to the unit vector in the direction of the freestream. Al-
though it is intuitively more appealing to align the trailing vortex
sheet with the freestream, in reality, this makes very little difference
in the final result. For typical wings, aligning the trailing vortex
sheet with the chord line rather than the freestream produces errors
in the resulting forces and moments of less than 1%. Still, because
the method allows the trailing vortex sheet to be aligned easily with
the freestream, this should always be done.

When a system of lifting surfaces is synthesized using N horse-
shoe vortices,in a manner similar to that shown in Fig. 1, Eq. (3) can
be used to determine the resultant velocity induced at any point in
space, if the strength of each horseshoe vortex is known. However,
these strengths are not known a priori. To compute the strengths of
the N vortices, we must have a system of N equationsrelating these
N strengthsto some known properties of the wing. In what has com-
monly been referred to as the numerical lifting-line method,'* these
N equations are provided by forcing a Neumann condition, which
specifies zero normal velocity at the three-quarterchord of the wing
section midway between the trailing legs of each horseshoe vortex.
This method works remarkably well for planar swept wings with no
camber. However, not surprisingly, this method does not work well
for cambered wings or for wings including deflected flaps and/or
control surfaces.

In reality, this numerical lifting-line method is simply the vortex
lattice method'®!7 applied using only a single lattice element, in the
chordwise direction, for each spanwise subdivision of the wing.
Applying the Neumann conditionat only one pointin the chordwise
direction is clearly not adequate for wing sections with camber or
flap deflection. This method gives a result that depends only on the
position and slope of the camber line at the three-quarterchord. The
predicted performance is completely independent of camber line
shape at any other chordwise location. This is clearly not realistic.

For a more pragmatic approach, we turn to the general three-
dimensional vortex lifting law,°

F :///p(v X w) dV
Vv

Using Prandtl’s hypothesis, we assume that each spanwise wing
section has a sectionlift equivalentto that acting on a similar section
ofaninfinite wing with the samelocal angleof attack. Thus, applying
the vortex lifting law to a differential segment of the lifting line, we
have

dF = pT'V xd¢ )

Ifflow overa finite lifting surfaceis synthesizedfrom a uniform flow
combined with horseshoe vortices placed along the quarter-chord
line, from Eq. (3), the local velocityinducedat a control point placed
anywhere along the bound segment of horseshoe vortex j is

vV, =V +XN:& 5)
i =Ve -
i=1 !
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where v;; is the dimensionless induced velocity

r Uy Xr,-z_,» -]
Tiyj (rizj U 'riz.f)
C; (rfl.f + riz.i) (’n.f Xrizj) .,
e + ; i
T TiyjTisj (rfljriz.f +ri; 'riz.f)
Uy Xr,-l_,»
Vij = -
L ril.f(rfl.f U "fl.f) i
r Uy Xr,-z_,»
Ci | Tiaj (rizj Tl 'riz.f) P
4 _ U Xr,-lj ’ =J (6)
L ril.f(rfl.f U "fl.f)

At this point, ¢; could be any characteristiclength associated with
the wing section aligned with horseshoe vortexi. This characteristic
length is simply used to nondimensionalizeEq. (6) and has no effect
on the induced velocity. The choice of characteristic length will be
addressedlater. The bound vortex segment s excluded from Eq. (6),
wheni = j, becausea straight vortex segmentinducesno downwash
along its own length.

FromEgs. (4) and (5), the aerodynamicforce acting on a spanwise
differential section of the lifting surface located at control point i is
given by

N
r.
dF;, = pT;| Ve, + —Ly,; | xdg; 7
P Z; 7 (7
When we allow for the possibilityof flap deflection, the local section
lift coefficient for the airfoil section located at control point i is a
function of local angle of attack and local flap deflection,

Co =Cq(0;, &) ®)

The local angle of attack at control point i is

Vi " Uni
o = tan~! (ﬁ) 9)

where u,; and u,,; are, respectively, the unit vectorsin the chordwise
direction and the direction normal to the chord, both in the plane of
the local airfoil section as shown in Fig. 3. If the relation implied
by Eq. (8) is known at each section of the wing, the magnitude of
the aerodynamic force acting on a spanwise differential section of
the wing located at control point i can be written as

ldF;| = 3pVz Ca(o, &) dA; (10)

Setting the magnitudeof the force from Eq. (7) equal to that obtained
from Eq. (10) and rearranging, we can write

N
2 vw+zv_,»,-cj X |G = Ca(a;, 3) =0 (11)

j=1

quarter-chord line

horseshoe vortex i

local airfoil secti L
ocal airroil section i u\A

aligned with local chord £
line and local dihedral

Fig. 3 Unit vectors describing the orientation of the local airfoil sec-
tion.

where

V _d¢; TI;
s ¢, =EC—, i =
Ve dA; i Ve

_ 00
Vo & —

and, from Egs. (5) and (9), the local angle of attack written in terms
of the dimensionless variables is given by

N

<V°o + Z/ -1 V,,G,) Uy
N

<V°o + Zj -1 VJ’,'GJ»> Uy

-1

a; = tan (12)

Equation (11) can be written for N different control points, one
associated with each of the N horseshoe vortices used to synthesize
the lifting surface or system of lifting surfaces. This provides a sys-
tem of N nonlinearequationsrelatingthe N unknown dimensionless
vortex strengths G; to known properties of the wing. At angles of
attack below stall, this system of nonlinear equations surrenders
quickly to Newton’s method.

To apply Newton’s method, the system of equations is written in
the vector form:

F(G) =R (13)

where

N
FiG) =2|[ve + Y _v;G; | X¢|Gi = Caler. &) (14)

Jj=1

We wish to find the vector of dimensionless vortex strengths G that
makes all components of the residual vector R go to zero. Thus, we
want the change in the residual vector to be —R. We start with an
initial estimate for the G vector and iteratively refine the estimate
by applying the Newton corrector equation

[JIAG = -R (15)

where [J] is the N by N matrix of partial derivatives

2w, - (v;; X ¢ G T
[w; | l L
s i
0Cy Vai(vji “Up) — Vni(vji “Ug) /
) 2 2
_oF L oq; va v i
ij =32~ —
0G; - 2w - (vi: X n
J 2w, | + wi - (Vi C’)G,-
lw; |
s =i
0Cy Vai(vji SUyi) — Vni(vji “Ugi)
| vz +v2 i
(16)
N
wi = [ve + ZVﬁG-i X ¢ (17)
j=1
N
Vi & | Vo + Zvj,-Gj Uy, (18)
j=1
and
N
Vi = | Vo + Zvj,-Gj C Uy (19)

Jj=1

Using Eq. (16) in Eq. (15), we compute the correction vector A G.
This correction vector is used to obtain an improved estimate for
the dimensionless vortex strength vector G according to

G=G+QOAG (20)
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This process is repeated until the magnitude of the largest residual
is less than some convergence criteria. For angles of attack below
stall, this method converges very rapidly using almost any initial
estimate for G and a relaxationfactor 2 of unity. At angles of attack
beyond stall, the method must be highly under relaxed and is very
sensitive to the initial estimate for G.

For the fastest possible convergence of Newton’s method, we
require an accurate initial estimate for the dimensionless vortex
strength vector. For this purpose, a linearized version of Eq. (11) is
useful. For a straight lifting surface of infinite aspect ratio at small
angles of attack, the downwash is zero, the section lift is a linear
functionofangle of attack, and all nonlinearterms in Eq. (11) vanish.
For a lifting surface of high aspectratio with no sweep or dihedral,
at small angles of attack, we can still ignore the nonlinearterms and
compute an approximate dimensionless vortex strength vector from
this linear system.

At small angles of attack, the local section lift coefficient can be
approximated as

Co(ey, 6) = Cyi(ap — arg +€9) @2n

Using the small angle approximation for both the geometric angle
of attack and the induced angle of attack, after applying Eq. (12) to
Eq. (21), we have

N
Co = Cy, (vw U+ Y Vi, Gy = oy + g,-a,-) (22)

Jj=1

Applying Eq. (22) to Eq. (11) and ignoring second-orderterms, we
obtain the linear system

N
2[ve X (G = Cy, Zvji Uy G =Cr,i (Voo = Uy — Qo + &6)

Jj=1

(23)

Equation (23) gives good results, at small angles of attack, for a
single lifting surface of high aspect ratio with no sweep or dihedral.
For larger angles of attack, highly swept wings, or for interacting
systems of lifting surfaces, the nonlinear system given by Eq. (11)
should be used. However, Eq. (23) provides a reasonable initial
estimate for the dimensionless vortex strength vector, to be used
with Newton’s method for obtaining a solution to this nonlinear
system.

Aerodynamic Forces and Moments

Once the vortex strengths have been determined, the total aero-
dynamic force vector can be determined from Eq. (7). If the lifting
surface or surfacesare synthesizedfroma large number of horseshoe
vortices, each covering a small spanwise increment of one lifting
surface, we can approximate the aerodynamic force as being con-
stant over each spanwise increment. Then, from Eq. (7), the total
aerodynamic force is given by

N N
F=pZ(T,-Vw +Z

i=1 j=1

I,T;
—! vj,-) X &¢; (24)
Cj

where 9¢; is the spatial vector along the bound segment of horseshoe
vortex i from node 1 to node 2, in the direction of segment vorticity.
When we nondimensionalize Eq. (24), the total nondimensional
aerodynamic force is

_F ¥y - 5A,
%pVO% Ar :22 Giv°o + ZG,‘G.,’VJ’,' XCIA—' (25)

i=1 j=1

where 8A; is the planform area of segment i,

52
SA; =/ cds (26)
s =51

The aerodynamic moment generated about the center of gravity
is

N N o
M=er,- x| (T,V., +Z Ly | x o6 | + oM, (27)
i=1 j=1 €
If we assume a constant section moment coefficient C,,; over each
spanwise increment, then

1 2
SM; = —Epvg Coi / 2 ds uy; (28)
5§ =5

where u;; is the local spanwise unit vector shown in Fig. 3,
Usi = Uygi X Uy (29)

When we use Eq. (28) in Eq. (27) and nondimensionalize

M N N
W = Z 2r; X | | Give + ZGiijji X ¢
0 r T i=1

Jj=1

Coi [* 2y SA, 0
oA ), O UM AL

To this point, the local characteristic length ¢; has not been de-
fined. It could be any characteristiclength associated with the span-
wise incrementof the lifting surfacethatis associatedwith horseshoe
vortex i. From Eq. (30), we see that the natural choice for this lo-
cal characteristic length is the integral of the chord length squared,
with respect to the spanwise coordinate, divided by the incremental
area. If we also assume a linear variation in chord length over each
spanwise increment, we have

2 ¢, + ¢
54, =/ cds = #(s,-2 - si,) (1)
5 =51
and
1 [® 263 + ¢, +
G = — Ads == 72 B (32)
5A,‘ s =51 3 C,‘l + Ciz

When we use these definitions in Eq. (30), the dimensionless aero-
dynamic moment about the c.g. is

M N N
m = Z 2r; X Give + ZG;G.,»VJ,- X ¢;

i=1 j=1

] } 54,
—CpiCiuy; (—— (33)
AL,
Once the N dimensionlessvortex strengths G; are known, Egs. (25)
and (33) are used to evaluate the aerodynamic forces and moments.
Like panel methods, lifting-line theory provides only a potential
flow solution. Thus, the forces and moments computed from this
method do not include viscous effects, so that the parasitic drag is
unobtainable.In additionto this restriction, that also applies to panel
methods, lifting-line theory imposes an additional restriction that
doesnotapply to panel methods. For lifting surfaces with low aspect
ratio, Prandtl’s hypothesis breaks down, and the usual relationship
between local section lift and local section angle of attack no longer
applies. It has long been established that lifting-line theory gives
good agreement with experimental data for lifting surfaces of aspect
ratio greater than about four.? For lifting surfaces of lower aspect
ratio, panel methods or CFD solutions should be used.
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Fig. 4 Lifting-line grid with cosine clustering and 20 elements per
semispan.

Grid Generation and Control Points

Each lifting surface must, of course, be divided into spanwise
elements, in a manner similar to that shown symbolically in Fig. 1.
In Fig. 1, the wing is divided into elements of equal spanwise in-
crement. However, this is not the most efficient way in which to
grid a lifting surface. Because vorticity is shed from a lifting sur-
face more rapidly in the region near the tips, the nodal points should
be clustered more tightly in this region for best computational effi-
ciency. The authors have found conventionalcosine clusteringto be
quite efficient. For straightlifting surfaces, clusteringis only needed
near the tips and the cosine distribution can be applied across the
entire span. However, for a lifting surface with sweep and/or dihe-
dral, there is a step change in the slope of the quarter chord at the
root. This step change causes the downwash to change very rapidly
in the region near the root. Thus, in general, the authors recom-
mend applying cosine clusteringindependently over each semispan
of each lifting surface, as shown in Fig. 4. This clusters the nodes
more tightly at both the tip and the root. This clustering is based on
the change of variables,

s/b =[1—-cos(¢)]/4 (34)

Over each semispan, ¢ varies from zero to & as s varies from zero to
b/2. Distributing the nodes uniformly in ¢ will provide the desired
clusteringin s. If the total number of horseshoe elements desired on
each semispan is n, the spanwise nodal coordinates are computed
from,

si/b = %[1 = cos(in/n)], 0<i<n (35)

where the bound segment of horseshoe vortex i extends from node
i to node i — 1 on a left semispan and from node i — 1 to node i
on a right semispan. The authors have found that using this nodal
distribution with about 40 horseshoe elements per semispan gives
the best compromise between speed and accuracy. Figure 4 shows
a system of lifting surfaces overlaid with a grid of this type using
20 elements per semispan.

Because singularities occur at the junctures of adjacent bound-
vortex segments, for maximum accuracy and computational effi-
ciency, the location of control points must be critically assessed. At
first thought, it would seem most reasonable to place control points
on the bound segment of each vortex, midway between the two trail-
ing legs. However, the authors have found that this does not give the
bestnumerical accuracy. A significantimprovementin accuracy, for
a given number of elements, can be achieved by placing the control
points midway in ¢ rather than midway in s. Thus, the spanwise
control point coordinates are computed from

s,-/bzi{l —cos[(in/n) — (x/2n)]}, I1<i<n (36)
This distributionplaces control points very near the spatial midpoint
of each bound vortex segment, over most of the wing. However, near
the root and the tip, these control points are significantly offset from
the spatial midpoint.

Results

For straight elliptic wings with no geometric twist and no aero-
dynamic twist, Prandtl’s classical lifting-line theory gives a very
simple and well-known closed-form solution. From this solution,
the section lift distributionin the spanwise directionis given by

fl _ 4Ra
%pvo% choo ﬂRa + C&x

[1 = (25/b)*]? (37)
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Fig. 5 Section lift distribution for three elliptic wings.
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Fig. 6 Section induced drag distribution for three elliptic wings.

This same solution gives the local section induced drag
. 4R,
Ju _ _ ~[1 — (25/b)°]2 (38)
(7R, + Cy,)

pV2eCy,

As a first-order test, the numerical method presented here should
agree with Egs. (37) and (38), at small angles of attack, for a straight
elliptic wing with no geometric or aerodynamic twist. Figure 5
shows a comparison between the section lift distribution predicted
by Eq. (37) and that predicted by the present numerical method
for three straight elliptic wings of different aspect ratio. Figure 6
compares the induced drag distribution predicted by Eq. (38) to
that predicted from the present method for the same three elliptic
wings. A similar comparison for tapered wings shows very similar
results. The numerical results shown in Figs. 5 and 6 were all gen-
erated using 40 horseshoe elements per semispan for wings having
a NACA 2412 airfoil section. Similar comparisons were made for
other straight wings having varying amounts of camber, taper, and
washout. Camber was varied from 0 to 8%, taper ratio was varied
from 0.1 to 1.0, and washout was varied from O to 5 deg. In all cases,
the numerical solution using 40 horseshoe elements per semispan
agreed with the classical lifting-line solution to within two-tenths
of 1% for the induced drag and to within five-hundredths of 1% for
the lift. Thus, for all practical purposes, results obtained from this
numerical lifting-line method are identical to those obtained from
the classical lifting-line solution for a single lifting surface with
no sweep or dihedral. Because, for straight wings of aspect ratios
greater than about four, the classical solutionis known to adequately
predict the effects of aspect ratio, camber, and planform shape, the
same can be said for the present numerical solution.

Unlike the analytical solution to Prandtl’s classical lifting-line
theory, the present numerical method can be applied to wings with
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sweep and/or dihedral. To examine how well the present method
predicts the effects of sweep and dihedral, results obtained from this
method were compared with results obtained from a numerical panel
method and from an inviscid CFD solution. The results predicted for
the effects of sweep were also compared with limited experimental
data.

For the numerical panel method comparison, the commercial code
PMARC'*!° was selected. This code was developed at NASA Ames
Research Center and is one of the most efficient numerical panel
codes available. PMARC uses flat quadrilateral panels with uni-
form source and doublet distributions on each panel. This code also
accounts for the effects of wake rollup, using an unsteady wake
development approach.

The commercial code WIND,?® developed by the NPARC Al-
liance, was chosen for the inviscid CFD comparison. This code uses
a node-centered finite volume approach to solve the Euler equa-
tions on a structured grid. The available fifth-order upwind-biased
discretization scheme was used to reduce the effects of numerical
viscosity.

For all three numerical methods the grid size was repeatedly re-
fined until the solutionwas no longersignificantly affected by further
grid refinement. By this procedure, an optimum grid for each of the
three methods was selected as that which gave the best combina-
tion of accuracy and computational speed. With this method of grid
resolution, the numerical lifting-line method required 40 section el-
ements per semispan. Grid-resolved solutions for PMARC required
4500 panels per semispan. The selected grid was partitionedto give
45 segments along the semispan and 90 around the circumference,
with panelsclusterednear the leadingedge, the trailingedge, and the
wingtips. For WIND, a two-block H-H type mesh with 1.25 X 10°
grid points per semispan gave the best compromise between accu-
racy and computational efficiency. The computational domain for
the WIND solutions extended approximately 30 chords from the
wing in all directions, with grid points clustered near the wing and
the trailing-tip vortices. When these resolved grids were used for
the three methods, the computational time required to obtain a solu-
tion from PMARC was about2 X 10 times that required using the
presentnumericallifting-linemethod. The WIND solutionsrequired
approximately 2 X 10° times as long as the lifting-line solutions.

A comparison between results obtained from these three numer-
ical methods and previously published experimental data is shown
in Figs. 7 and 8. The solid lines and filled symbols correspond to
a straight wing of aspect ratio 6.57, with experimental data ob-
tained from McAlister and Takahashi?' The dashed lines and open
symbols are for a 45-deg swept wing of aspectratio 5.0, having ex-
perimental data reported by Weber and Brebner.?? Both wings have
symmetrical airfoil sections with no geometric twist and constant
chord throughoutthe span. The straight wing has a thicknessof 15%
and the swept wing has a thickness of 12%.

T T T T T T T
1.0 - — Lifting-line
v PMARC
E 0s | = WIND i
Q i ¢  Experimental Data pd
g 7
g i
3 0.6
&
fo 0.4 I
=
=
0.2 I
0.0 ' ' !

0.0 0.2 04 0.6 0.8 1.0 1.2 14
2-D Section Lift Coefficient

Fig. 7 Comparisonbetween the lift coefficient predicted by the numer-
ical lifting-line method, PMARC, and WIND with that obtained from
experimental data, for a straight wing and a wing with 45 deg of sweep.

0.06 T T T T T
Lifting-line /
005 - v PMARC /
= WIND
0.04 - ® Experimental Data/

0.03 |- /o -
. / ,
JSoo ¥

Induced Drag Coefficient

0.02

/“ .
v

0.01 - u © 4

v
58
000 i 1 1 1 1
0.0 0.2 04 0.6 0.8 1.0
Lift Coefficient

Fig. 8 Comparison between the induced drag coefficient predicted by
the numerical lifting-line method, PMARC, and WIND with that ob-
tained from experimental data, for a straight wing and a wing with
45 deg of sweep.

From the results shown in Fig. 7, we see that the lift coefficient
predicted by all three methods is in good agreement with experi-
mental observations for both wings. From Fig. 8 we see that, for
the straight wing, the induced drag predicted by both the numeri-
cal lifting-line method and by PMARC is in good agreement with
experimental data, whereas WIND gives an induced drag that is
somewhat higher. The predictions for induced drag on the swept
wing are not nearly as good. For this wing, the induced drag pre-
dicted by the panel code is about 40% less than that observed exper-
imentally. However, both the numerical lifting-line method and the
CFD solution give induced drag values that are about 25% above
the experimental values. Still, the values of induced drag predicted
by the numerical lifting-line method are as good as or better than
those predicted by the other two methods, even for this highly swept
wing. Furthermore, the induced drag on a highly swept wing, as pre-
dicted by the present method, appears to be somewhat conservative,
whereas the panel code predicts an induced drag that is too low.
Though none of the numerical methods tested seemed to do very
well at predicting the effects of sweep on induced drag, all three of
the methods appeared to do a good job of predicting the eftects of
sweep on lift.

To obtain the numerical lifting-linesolutions shown in Figs. 7 and
8, we have used the linear relationship between a two-dimensional
section lift coefficient and a section angle of attack that is predicted
by thin airfoil theory. Because the downwash and induced angle of
attack are obtained from the solution to the nonlinear system given
by Eq. (11), we have no reason to expect that the lift coefficient
predicted for the complete wing should be a linear function of geo-
metric angle of attack. However, the results in Fig. 7 show that this
relationshipis, in fact, very nearly linear for both wings. The result
predicted for the straight wing is almost exactly linear, as is also
predicted by the classical lifting-line solution. Even for the highly
swept wing, the deviation from linearity is quite small. Both the
panel code and the experimental data confirm this result.

The overpredictionof induced drag by the CFD code for both the
straight wing and the swept wing is likely due to numerical viscosity
and is expected. However, the reason that the numerical lifting-line
method overpredictsinduced drag for the swept wing, butnot for the
straight wing, may be less obvious. The foundation of lifting-line
theory requires the bound vorticity to follow the chordwise aerody-
namic center of the wing. The numerical lifting-line solution shown
in Fig. 8 was obtained by assuming that the lifting-line follows the
wing quarter chord, which is the theoretical aerodynamic center
from thin airfoil theory. With this assumption, the discontinuity in
the slope of the quarter chord at the spanwise midpoint of a highly
swept wing produces a rather strong singularity (see, for example,
Cheng and Meng?*). This results in the prediction of strong down-
wash and large induced drag in the region near this singularity. In
reality, the experimental results of Weber and Brebner?? show that,
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Fig. 9 Deviation of the aerodynamic center from the quarter chord in
the region near the spanwise midpoint of a highly swept wing.
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Fig. 10 Comparison between the rolling moment coefficient predicted
by the numerical lifting-line method, PMARC, and WIND for wings
with 10 and 20 deg of dihedral.

near the spanwise midpointof a highly swept wing, the aerodynamic
center moves considerably aft of the wing quarter chord, as shown
in Fig. 9. This removes the discontinuity in slope at the spanwise
midpoint of the lifting line and significantly reduces the predicted
induced drag. Unfortunately, there is currently no simple means to
predict the true chordwise aerodynamic center of a highly swept
wing in the region near the spanwise midpoint. Thus, the present
method cannot easily be corrected to remove this error.

The accuracy of the present numerical lifting-line method for
predictingdihedral effects was also tested by comparing this method
with both PMARC and WIND. Figure 10 shows the variation in
rolling moment coefficient with sideslip angle for two nonplanar
rectangularwings having differentdihedral, as predicted by all three
methods. Both wings have symmetric NACA 0015 airfoil sections
with no sweep or twist and an aspectratio of 6.57. The solid line and
filled symbols correspond to a wing with 20 deg dihedral, whereas
the dashedline and open symbols are fora wing with 10 deg dihedral.

From Fig. 10, we see that all three methods agree very closely in
their predictions for the wing with 10 deg dihedral. For this wing
the agreementbetween the lifting-line method and the panel code is
within 2%, and the CFD solutionagrees with the lifting-linesolution
to within 7%. The three methods do, however, diverge somewhatin
their predictionsfor the wing with 20-deg dihedral. This divergence
becomes more pronounced at very large sideslip angles. For the
wing with 20-deg dihedral at sideslip angles in the range of 12 deg,
the panel code predicts a rolling moment coefficient that is about 9%
above that predicted by the lifting-line method, whereas the CFD
solution predicts a result that is nearly 10% below the lifting-line
solution.

The present numerical method could be used to predict the aero-
dynamic forces and moments acting on a system of lifting surfaces
with arbitrary position and orientation. Each lifting surface would
be synthesized by distributing horseshoe vortices on a grid struc-
tured similarly to that shown in Fig. 4. Because all of the horseshoe
vortices used to synthesize the complete system of lifting surfaces

Fig. 11 Pressure forces and shed vorticity for a system of lifting sur-
faces as predicted by the numerical lifting-line method.

are combined and forced to satisfy Eq. (11) as a single system of
coupled equations, the interactions between lifting surfaces are di-
rectly accounted for. An example of such interactionscan be seen in
Fig. 11. The lifting surfaces shown in Fig. 11 all have symmetric air-
foil sectionsand are orientedto give a zero geometricangle of attack.
The only direct production of lift in this configuration comes from
a deflection of the ailerons. The deflected ailerons produce lift and
vorticity that in turn induce lift and vorticity on all other surfaces. In
Fig. 11 the arrows indicate the magnitude and direction of the local
section force, and the streamwise lines at the trailing edge of each
lifting surface indicate the magnitude of the local shed vorticity. As
can be seen from Fig. 11, the lifting surface interactions predicted
by the present method are at least qualitatively correct. However,
further study is needed to determine the quantitativeaccuracy of the
predicted lifting surface interactions.

The present numerical method contains no inherent requirement
for a linear relationshipbetween section lift and section angle of at-
tack. Thus, the method could conceivably be applied, with caution,
to account approximately for the effects of stall. The lifting-line
method requires a known relationship for the section lift coefficient
as a function of section angle of attack. Because such relationships
must be obtained experimentally beyond stall, the present method
would predict stall by using a semi-empirical correctionto an other-
wise potential flow solution. For this reason, the method should be
used with extreme caution for angles of attack beyond stall. How-
ever, the method may be able to predict the onset of stall. Further
study is needed to determine to what extent the method can be used
at angles of attack near or beyond stall.

Conclusions

The insight of Ludwig Prandtl (1875-1953) was nothing short of
astonishing. This was never more dramatically demonstratedthanin
the developmentofhis classicallifting-linetheory, during the period
from 1911-1918. The utility of this simple and elegant theory is so
great thatit is still widely used today. Furthermore, with a few minor
alterations and the use of a modern computer, the model proposed
by Prandtl can be used to predict the inviscid forces and moments
acting on lifting surfaces of aspectratio greater than about four with
an accuracy as good as that obtained from modern panel codes or
CFD, but at a small fraction of the computational cost.
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